Testing Unfaithful Gaussian Graphical Models
نویسندگان
چکیده
The global Markov property for Gaussian graphical models ensures graph separation implies conditional independence. Specifically if a node set S graph separates nodes u and v then Xu is conditionally independent of Xv given XS . The opposite direction need not be true, that is, Xu ⊥ Xv | XS need not imply S is a node separator of u and v. When it does, the relation Xu ⊥ Xv | XS is called faithful. In this paper we provide a characterization of faithful relations and then provide an algorithm to test faithfulness based only on knowledge of other conditional relations of the form Xi ⊥ Xj | XS .
منابع مشابه
Image Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملMultiple Testing and Error Control in Gaussian Graphical Model Selection
Graphical models provide a framework for exploration of multivariate dependence patterns. The connection between graph and statistical model is made by identifying the vertices of the graph with the observed variables and translating the pattern of edges in the graph into a pattern of conditional independences that is imposed on the variables’ joint distribution. Focusing on Gaussian models, we...
متن کامل7 Multiple Testing and Error Control in Gaussian Graphical Model Selection
Graphical models provide a framework for exploration of multivariate dependence patterns. The connection between graph and statistical model is made by identifying the vertices of the graph with the observed variables and translating the pattern of edges in the graph into a pattern of conditional independences that is imposed on the variables’ joint distribution. Focusing on Gaussian models, we...
متن کاملLocal and Global Inference for High Dimensional Nonparanormal Graphical Models
This paper proposes a unified framework to quantify local and global inferential uncertainty for high dimensional nonparanormal graphical models. In particular, we consider the problems of testing the presence of a single edge and constructing a uniform confidence subgraph. Due to the presence of unknown marginal transformations, we propose a pseudo likelihood based inferential approach. In sha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014